Woodland bat assemblages are usually structured in a space according to the distance from the ground, water, and obstacles, features that often define chiropteran hunting tactics. Consequently, the bat species composition differs strongly among various habitats, even within the same forest patch. However, when conducting local bat surveys in Wolin National Park (WPN), we revealed an unexpected uniformity in the qualitative and quantitative structure of bat assemblages, based on mist netting and ultrasound recording. In total, 10 vespertilionid species were detected. Across all methods and sampled habitats, a single species, Pipistrellus pygmaeus, predominated, while no Barbastella barbastellus, an old forest specialist, were detected, despite the abundance of their preferred daily roosts. We also reviewed the literature for mist-netted bat samples in four different habitats in lowland Polish forests. The samples usually clustered based on habitats, and the same habitat classes often clustered very closely despite representing geographically distant forests. The exception was WPN, where all four habitat classes formed a tightly packed cluster. We hypothesize that P. pygmaeus might act as a hyperabundant native species, a successful generalist that reduces the contribution of more specialized taxa in the assemblage. It probably benefits from both forest renaturation and anthropogenic cross-boundary subsidy.