We study the time irreversibility of the direct cascade in two-dimensional turbulence by looking at the time derivative of the square vorticity along Lagrangian trajectories, a quantity called metenstrophy. By means of extensive direct numerical simulations we measure the time irreversibility from the asymmetry of the probability density function of the metenstrophy and we find that it increases with the Reynolds number of the cascade, similarly to what is found in three-dimensional turbulence. A detailed analysis of the different contributions to the enstrophy budget reveals a remarkable difference with respect to what is observed for the energy cascade, in particular the role of the statistics of the forcing to determine the degree of irreversibility.