A regime of very long meandering positive and negative streamwise velocity fluctuations, that we term ‘superstructures’, are found to exist in the log and lower wake regions of turbulent boundary layers. Measurements are made with a spanwise rake of 10 hot-wires in two separate facilities (spanning more than a decade of Reτ) and are compared with existing PIV and DNS results. In all cases, we note evidence of a large-scale stripiness in the streamwise velocity fluctuations. The length of these regions can commonly exceed 20δ. Similar length scales have been previously reported for pipes and DNS channel flows. It is suggested that the true length of these features is masked from single-point statistics (such as autocorrelations and spectra) by a spanwise meandering tendency. Support for this conjecture is offered through the study of a synthetic flow composed only of sinusoidally meandering elongated low- and high-speed regions. From detailed maps of one-dimensional spectra, it is found that the contribution to the streamwise turbulence intensities associated with the superstructures appears to be increasingly significant with Reynolds number, and scales with outer length variables (δ). Importantly, the superstructure maintains a presence or footprint in the near-wall region, seeming to modulate or influence the near-wall cycle. This input of low-wavenumber outer-scaled energy into the near-wall region is consistent with the rise in near-wall streamwise intensities, when scaled with inner variables, that has been noted to occur with increasing Reynolds number. In an attempt to investigate these structures at very high Reynolds numbers, we also report on recent large-scale sonic anemometer rake measurements, made in the neutrally stable atmospheric surface layer. Preliminary results indicate that the superstructure is present in the log region of this atmospheric flow at Reτ = 6.6×105, and has a size consistent with outer scaling.
In this paper we investigate the relationship between the large- and small-scale energy-containing motions in wall turbulence. Recent studies in a high-Reynolds-number turbulent boundary layer (Hutchins & Marusic, Phil. Trans. R. Soc. Lond. A, vol. 365, 2007a, pp. 647–664) have revealed a possible influence of the large-scale boundary-layer motions on the small-scale near-wall cycle, akin to a pure amplitude modulation. In the present study we build upon these observations, using the Hilbert transformation applied to the spectrally filtered small-scale component of fluctuating velocity signals, in order to quantify the interaction. In addition to the large-scale log-region structures superimposing a footprint (or mean shift) on the near-wall fluctuations (Townsend, The Structure of Turbulent Shear Flow, 2nd edn., 1976, Cambridge University Press; Metzger & Klewicki, Phys. Fluids, vol. 13, 2001, pp. 692–701.), we find strong supporting evidence that the small-scale structures are subject to a high degree of amplitude modulation seemingly originating from the much larger scales that inhabit the log region. An analysis of the Reynolds number dependence reveals that the amplitude modulation effect becomes progressively stronger as the Reynolds number increases. This is demonstrated through three orders of magnitude in Reynolds number, from laboratory experiments at Reτ ~ 103–104 to atmospheric surface layer measurements at Reτ ~ 106.
Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally $2\times 1{0}^{4} \lt {\mathit{Re}}_{\tau } \lt 6\times 1{0}^{5} $ for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of Townsend (The Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall.
We review wall-bounded turbulent flows, particularly high-Reynolds number, zero-pressure gradient boundary layers, and fully developed pipe and channel flows. It is apparent that the approach to an asymptotically high-Reynolds number state is slow, but at a sufficiently high Reynolds number the log law remains a fundamental part of the mean flow description. With regard to the coherent motions, very-large-scale motions or superstructures exist at all Reynolds numbers, but they become increasingly important with Reynolds number in terms of their energy content and their interaction with the smaller scales near the wall. There is accumulating evidence that certain features are flow specific, such as the constants in the log law and the behavior of the very large scales and their interaction with the large scales (consisting of vortex packets). Moreover, the refined attached-eddy hypothesis continues to provide an important theoretical framework for the structure of wall-bounded turbulent flows. 353 Annu. Rev. Fluid Mech. 2011.43:353-375. Downloaded from www.annualreviews.org by University of Melbourne on 10/22/12. For personal use only.
Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.