A model-based description of the scaling and radial location of turbulent fluctuations in turbulent pipe flow is presented and used to illuminate the scaling behaviour of the very large scale motions. The model is derived by treating the nonlinearity in the perturbation equation (involving the Reynolds stress) as an unknown forcing, yielding a linear relationship between the velocity field response and this nonlinearity. We do not assume small perturbations. We examine propagating modes, permitting comparison of our results to experimental data, and identify the steady component of the velocity field that varies only in the wall-normal direction as the turbulent mean profile. The "optimal" forcing shape, that gives the largest velocity response, is assumed to lead to modes that will be dominant and hence observed in turbulent pipe flow.An investigation of the most amplified velocity response at a given wavenumberfrequency combination reveals critical layer-like behaviour reminiscent of the neutrally stable solutions of the Orr-Sommerfeld equation in linearly unstable flow. Two distinct regions in the flow where the influence of viscosity becomes important can be identified, namely a wall layer that scales with R +1/2 and a critical layer, where the propagation velocity is equal to the local mean velocity, that scales with R +2/3 in pipe flow. This framework appears to be consistent with several scaling results in wall turbulence and reveals a mechanism by which the effects of viscosity can extend well beyond the immediate vicinity of the wall.The model reproduces inner scaling of the small scales near the wall and an approach to outer scaling in the flow interior. The appropriate scaling velocity for the very large scale motions is predicted to be the centreline velocity, in agreement with experimental results. Lastly, we interpret the wall modes as the motion required to meet the wall boundary condition, identifying the interaction between the critical and wall modes as a potential origin for an interaction between the large and small scales that has been observed in recent literature as an amplitude modulation of the near-wall turbulence by the very large scales.
If the square matrix A is real, its eigenvalues are either real or come in complex conjugate pairs. c In such case, A is called diagonalizable or non-defective. If A is defective, we have A = V JV −1 with J being the canonical Jordan form [31,33].
We review wall-bounded turbulent flows, particularly high-Reynolds number, zero-pressure gradient boundary layers, and fully developed pipe and channel flows. It is apparent that the approach to an asymptotically high-Reynolds number state is slow, but at a sufficiently high Reynolds number the log law remains a fundamental part of the mean flow description. With regard to the coherent motions, very-large-scale motions or superstructures exist at all Reynolds numbers, but they become increasingly important with Reynolds number in terms of their energy content and their interaction with the smaller scales near the wall. There is accumulating evidence that certain features are flow specific, such as the constants in the log law and the behavior of the very large scales and their interaction with the large scales (consisting of vortex packets). Moreover, the refined attached-eddy hypothesis continues to provide an important theoretical framework for the structure of wall-bounded turbulent flows. 353 Annu. Rev. Fluid Mech. 2011.43:353-375. Downloaded from www.annualreviews.org by University of Melbourne on 10/22/12. For personal use only.
Wall-bounded turbulent flows at high Reynolds numbers have become an increasingly active area of research in recent years. Many challenges remain in theory, scaling, physical understanding, experimental techniques, and numerical simulations. In this paper we distill the salient advances of recent origin, particularly those that challenge textbook orthodoxy. Some of the outstanding questions, such as the extent of the logarithmic overlap layer, the universality or otherwise of the principal model parameters such as the von Kármán "constant," the parametrization of roughness effects, and the scaling of mean flow and Reynolds stresses, are highlighted. Research avenues that may provide answers to these questions, notably the improvement of measuring techniques and the construction of new facilities, are identified. We also highlight aspects where differences of opinion persist, with the expectation that this discussion might mark the beginning of their resolution.
We study the Reynolds number scaling and the geometric self-similarity of a gainbased, low-rank approximation to turbulent channel flows, determined by the resolvent formulation of McKeon & Sharma (2010), in order to obtain a description of the streamwise turbulence intensity from direct consideration of the Navier-Stokes equations. Under this formulation, the velocity field is decomposed into propagating waves (with single streamwise and spanwise wavelengths and wave speed) whose wall-normal shapes are determined from the principal singular function of the corresponding resolvent operator. Using the accepted scalings of the mean velocity in wall-bounded turbulent flows, we establish that the resolvent operator admits three classes of wave parameters that induce universal behavior with Reynolds number on the low-rank model, and which are consistent with scalings proposed throughout the wall turbulence literature. In addition, it was shown that a necessary condition for geometrically self-similar resolvent modes is the presence of a logarithmic turbulent mean velocity. Under the practical assumption that the mean velocity consists of a logarithmic region, we identify the scalings that constitute hierarchies of self-similar modes that are parameterized by the critical wallnormal location where the speed of the mode equals the local turbulent mean velocity. For the rank-1 model subject to broadband forcing, the integrated streamwise energy density takes a universal form which is consistent with the dominant near-wall turbulent motions. When the shape of the forcing is optimized to enforce matching with results from direct numerical simulations at low turbulent Reynolds numbers, further similarity appears. Representation of these weight functions using similarity laws enables prediction of the Reynolds number and wall-normal variations of the streamwise energy intensity at high Reynolds numbers (Re τ ≈ 10 3 − 10 10 ). Results from this low-rank model of the Navier-Stokes equations compare favorably with experimental results in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.