In this paper, a new implementation of an electronically tunable resistor-less floating inductance simulator using a second-generation voltage conveyor (VCII) is presented. The proposed circuit is resistor-free (benefiting from the intrinsic resistors at the Y terminals of the employed VCIIs) and composed of three VCIIs and a single grounded capacitor. Using a control current (Icon), the value of impedance at the Y terminal of the VCII is varied, whereby the value of the simulated inductance is tuned. The proposed circuit is designed at a transistor level using 0.18 µm TSMC CMOS parameters and ±0.9 V supply voltage. PSpice simulations are carried out to confirm the effectiveness of the proposed circuit. For a range of Icon from 0 µA to 50 µA, the value of the simulated L can be varied from −576 µH to −324 µH and from +316 µH to +576 µH for negative and positive simulators, respectively, in the frequency range of 100 kHz–3 MHz. Favorably, the value of the series resistance remains below 76 Ω. Simulation results show an error value below 4.8% and power consumption variation is from 1.64 mW to 1.92 mW. Moreover, application of the proposed circuit as a standard band-pass RLC filter is also included.