Flocking control problem of mobile robots under environment with unknown obstacles is addressed in this paper. Based on the simulated annealing algorithm, a flocking behaviour for mobile robots is achieved which converges to alignment while avoiding obstacles. Potential functions are designed to evaluate the positional relationship between robots and obstacles. Unlike the existing analytical method, simulated annealing algorithm is utilized to search the quasi-optimal position of robots in order to reduce the potential functions. Motion control law is designed to drive the robot move to the desired position at each sampling period. Experiments are implemented, and the results illustrate the effectiveness of the proposed flocking control method.