Many striking non-equilibrium phenomena have been discovered or predicted in opticallydriven quantum solids 1 , ranging from light-induced superconductivity 2,3 to Floquetengineered topological phases 4-8 . These effects are expected to lead to dramatic changes in electrical transport, but can only be comprehensively characterized or functionalized with a direct interface to electrical devices that operate at ultrafast speeds 1-8 . Here, we make use of laser-triggered photoconductive switches 9 to measure the ultrafast transport properties of monolayer graphene, driven by a mid-infrared femtosecond pulse of circularly polarized light. The goal of this experiment is to probe the transport signatures of a predicted light-induced topological band structure in graphene 4,5 , similar to the one originally proposed by Haldane 10 . We report the observation of an anomalous Hall effect in the absence of an applied magnetic field. We also extract quantitative properties of the non-equilibrium state. The dependence of the effect on a gate potential used to tune the Fermi level reveals multiple features that reflect the effective band structure expected from Floquet theory. This includes a ∼60 meV wide conductance plateau centered at the Dirac point, where a gap of approximately equal magnitude is expected to open. We also find that when the Fermi level lies within this plateau, the estimated anomalous Hall conductance saturates around ∼1.8±0.4 e 2 /h.Optical driving has been proposed as a means to engineer topological properties in topologically trivial systems 4-8 . One proposal for such a 'Floquet topological insulator' is based on breaking time-reversal symmetry in graphene through a coherent interaction with circularly polarized light 4 . In this theory, the light field drives electrons in circular trajectories through the band structure (Fig. 1a). Close to the Dirac point, these states are predicted to acquire a non-adiabatic Berry phase every optical cycle, which is equal and opposite for the upper and lower band. This time-averaged extra phase accumulation amounts to an energy * These authors contributed equally to this work