A multilayered model of the aortic wall is introduced to investigate the transport of low-density lipoprotein (LDL) under hypertension, taking into account the influences of increased endothelial cell turnover and deformation of the intima at higher pressure. Meanwhile, the thickness and properties of the endothelium, intima, internal elastic lamina (IEL), and media are affected by the transmural pressure. The LDL macromolecules enter the intima through leaky junctions over the endothelium, which are created by dying or dividing cells. Water molecules enter the intima via the paracellular pathway through breaks in tight junctions after passing the glycocalyx as well as through leaky junctions. The glycocalyx is modeled as a Brinkman porous medium to describe the fluid filtration associated with its structure. Combined Navier-Stokes and Brinkman equations are solved for the transmural flow, and the convective-diffusion equation is employed for LDL transport. The permeation of LDL over the surface of smooth muscle cells is modeled through a uniform reaction evenly distributed in the macroscopically homogeneous media layer. Simulations are performed in an axisymmetric plane centered at a leaky cell. The overriding issue addressed is that LDL fluxes across the leaky junction, the intima, fenestral pores in the IEL, and the media layer are highly affected by the transmural pressure, which affects the endothelial cell turnover rate and the compaction of intima. The present model, for the first time and with no adjustable parameters, is capable of making many realistic predictions including the proper magnitudes for the permeability of endothelium and intimal layers and the hydraulic conductivity of all layers as well as their trends with pressure. Results for the volume flux through the wall and the hydraulic conductivity of the entire arterial wall, the endothelium, and subendothelial layers at 70 and 180 mmHg are in good agreement with previous experimental studies.