International audienceAn experimental and numerical investigation of the flow field of variable density turbulent offset jet is presented. The velocity measurements are performed using a Velocimetry Laser Doppler technique for an offset height h. Three cases of variable-density turbulent plane jets discharging from a rectangular nozzle into a quiescent medium are studied. The variation density jets considered were revealed at different Reynolds numbers. In the second step of this work, a numerical three-dimensional model of the problem is simulated through the resolution of the Navier-Stokes equations by means of the finite volume method and the Reynolds stress model second-order turbulent closure model. A non-uniform mesh system tightened close to the emitting nozzle and both the vertical and horizontal walls is also adopted. A good level of agreement was achieved, between the experiments and the calculations. Once the model validated, our model allowed the evaluation of the influence of the variation density on the characterizing features of the resulting flow filed. It is found that the centerline velocity and concentration of the heavier jet decays much faster than in the two other jets, and a similar behavior for the vertical profiles in the three variable-density jets is well reproduced in the simulation