The success of plant-parasitic nematodes as competitors with humans for crops is evidenced by the parasites' significant and continuous economic drain on global agriculture. Scientific efforts dedicated to the control of plant-parasitic nematodes employ strategies from the environmental to molecular levels. Understanding the interaction of the nematode with its environment, and the molecules involved, offers great promise for novel control agent development. Perhaps more significantly, such knowledge facilitates the generation of ever more detailed and sophisticated information on nematode biology and new molecular targets. Among the most economically important groups of plant-parasitic nematodes are those comprising the cyst-forming species and the root-knot nematodes. Presented here is a brief overview of research into the biology of these parasites relative to their life cycles. Recent advances in elucidating the molecular biology and biochemistry of nematode-plant interactions during the internal parasitic stages of the life cycle have been driven by advances in genomics and transcriptomics. The remarkable discoveries regarding parasitism, and the application of genetic resources in these findings, provide a template for advanced investigation of external, survival stages biology. While survival biology research lags somewhat behind that of parasitism with regard to the molecular genetics of signalling and response, its extensive catalogue promises explosive rates of discovery as progress in genomics and transcriptomics allows a molecular genetic examination of embryogenesis, dormancy and hatching. Our group is interested in behaviour, development and hatching of cyst and root-knot nematodes, and the effects of the environment on the mechanisms of these activities. Phytochemical and temperature effects are discussed, and evidence is presented that the cyst may provide useful molecules for exploring nematode physiology.