Through the use of Mie theory generalized to multiple spheres, the derivatives of the scattering matrix elements and ellipsometric scattering variables are found as a function of shell thickness and nonconcentricity for core-shell particles. In particular, for the case of a core-shell sphere system where the centers are not concentric, the derivatives are taken with respect to the line segment describing the distance between spherical centers. The derivatives of the scattering matrix elements can be used to calculate the changes in ellipsometric light scattering, allowing for sensitivity and precision in quantitative models of fluctuations in core-shell systems. Computed results giving model contrast for a variety of sizes and fluctuation modes are used to design and guide novel light-scattering experiments currently underway.