Frank-Kasper phases are tetrahedrally packed structures occurring in numerous materials, from elements to intermetallics to selfassembled soft materials. They exhibit complex manifolds of Wigner-Seitz cells with many-faceted polyhedra, forming an important bridge between the simple close-packed periodic and quasiperiodic crystals. The recent discovery of the Frank-Kasper σ-phase in diblock and tetrablock polymers stimulated the experiments reported here on a poly(isoprene-b-lactide) diblock copolymer melt. Analysis of small-angle X-ray scattering and mechanical spectroscopy exposes an undiscovered competition between the tendency to form self-assembled particles with spherical symmetry, and the necessity to fill space at uniform density within the framework imposed by the lattice. We thus deduce surprising analogies between the symmetry breaking at the body-centered cubic phase to σ-phase transition in diblock copolymers, mediated by exchange of mass, and the symmetry breaking in certain metals and alloys (such as the elements Mn and U), mediated by exchange of charge. Similar connections are made between the role of sphericity in real space for polymer systems, and the role of sphericity in reciprocal space for metallic systems such as intermetallic compounds and alloys. These findings establish new links between disparate materials classes, provide opportunities to improve the understanding of complex crystallization by building on synergies between hard and soft matter, and, perhaps most significantly, challenge the view that the symmetry breaking required to form reduced symmetry structures (possibly even quasiperiodic crystals) requires particles with multiple predetermined shapes and/or sizes.symmetry breaking | sphericity | Frank-Kasper phases | block polymers T he discovery of materials with aperiodic order, often referred to as "quasicrystals," 30 years ago (1, 2) heralded new and promising vistas for designing materials endowed with unique properties. In the 1950s Frank and Kasper (3, 4) recognized complex tetrahedral atomic-and molecular-packing geometries that bridge the familiar close-packed crystals [e.g., face-centered cubic (FCC), hexagonally close-packed (HCP), and body-centered cubic (BCC) structures] characterized by periodic order, and quasiperiodic crystals (QCs) that extend crystallography beyond the 230 space groups relevant to periodic crystals (5, 6). The scientific literature is replete with examples of Frank-Kasper phases in hard materials, particularly in the area of intermetallics (7-9), but also in a few complex elemental crystals, including manganese (10, 11) and uranium (12). Recently, this class of crystalline order has cropped up in a host of soft materials, including dendrimers (13), surfactant solutions (14), and block polymers (15, 16), often in close proximity to QC phases (17)(18)(19). To the best of our knowledge the principles underlying the formation of Frank-Kasper phases across both categories of materials have not been established, presenting enticing challenges to sc...