Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Fluorescence in situ hybridization (FISH) is the most widely used molecular technique to visualize chromosomal abnormalities. Here, we describe a novel 3D modeling approach to allow precise shape estimation and localization of FISH signals in the nucleus of human embryonic stem cells (hES) undergoing progressive but defined aneuploidy. The hES cell line WA09 acquires an extra copy of chromosome 12 in culture with increasing passages. Both diploid and aneuploid nuclei were analyzed to quantitate the differences in the localization of centromeric FISH signals for chromosome 12 as it transitions from euploidy to aneuploidy. We employed superquadric modeling primitives coupled with principal component analysis to determine the 3D position of FISH signals within the nucleus. A novel aspect of our modeling approach is that it allows comparison of FISH signals across multiple cells by normalizing the position of the centromeric signals relative to a reference landmark in oriented nuclei. Using this model we present evidence of changes in the relative positioning of centromeres in trisomy-12 cells when compared to diploid cells from the same population. Our analysis also suggests a significant change in the spatial distribution of at least one of the FISH signals in the aneuploid chromosome complements implicating that an overall change in centromere position may occur in trisomy-12 due to the addition of an extra chromosome. These studies underscore the unique utility of our modeling algorithms in quantifying FISH signals in three dimensions.
Fluorescence in situ hybridization (FISH) is the most widely used molecular technique to visualize chromosomal abnormalities. Here, we describe a novel 3D modeling approach to allow precise shape estimation and localization of FISH signals in the nucleus of human embryonic stem cells (hES) undergoing progressive but defined aneuploidy. The hES cell line WA09 acquires an extra copy of chromosome 12 in culture with increasing passages. Both diploid and aneuploid nuclei were analyzed to quantitate the differences in the localization of centromeric FISH signals for chromosome 12 as it transitions from euploidy to aneuploidy. We employed superquadric modeling primitives coupled with principal component analysis to determine the 3D position of FISH signals within the nucleus. A novel aspect of our modeling approach is that it allows comparison of FISH signals across multiple cells by normalizing the position of the centromeric signals relative to a reference landmark in oriented nuclei. Using this model we present evidence of changes in the relative positioning of centromeres in trisomy-12 cells when compared to diploid cells from the same population. Our analysis also suggests a significant change in the spatial distribution of at least one of the FISH signals in the aneuploid chromosome complements implicating that an overall change in centromere position may occur in trisomy-12 due to the addition of an extra chromosome. These studies underscore the unique utility of our modeling algorithms in quantifying FISH signals in three dimensions.
Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.