Accurate lineshape functions for modeling fluorescence line narrowing (FLN) difference spectra (DeltaFLN spectra) in the low-fluence limit are derived and examined in terms of the physical interpretation of various contributions, including photoproduct absorption and emission. While in agreement with the earlier results of Jaaniso [Proc. Est. Acad. Sci., Phys., Math. 34, 277 (1985)] and Funfschilling et al. [J. Lumin. 36, 85 (1986)], the derived formulas differ substantially from functions used recently [e.g., M. Ratsep et al., Chem. Phys. Lett. 479, 140 (2009)] to model DeltaFLN spectra. In contrast to traditional FLN spectra, it is demonstrated that for most physically reasonable parameters, the DeltaFLN spectrum reduces simply to the single-site fluorescence lineshape function. These results imply that direct measurement of a bulk-averaged single-site fluorescence lineshape function can be accomplished with no complicated extraction process or knowledge of any additional parameters such as site distribution function shape and width. We argue that previous analysis of DeltaFLN spectra obtained for many photosynthetic complexes led to strong artificial lowering of apparent electron-phonon coupling strength, especially on the high-energy side of the pigment site distribution function.