In this study, a novel diamine monomer containing ester and phenyl moieties, 1,2-diphenylethane-1,2-diyl bis(4-aminobenzoate) (1,2-DPEDBA), was synthesized through a three-step reaction. Using this diamine, a novel polyimide (PI) film was prepared with 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6-FDA) as a counter dianhydride through a typical two-step chemical imidization. For comparison, poly(pyromellitic dianhydride-co-4,4′-oxydianiline) (PMDA-ODA PI) was also synthesized via thermal imidization. The resulting 6-FDA-DPEDBA PI film was not only soluble in common polar solvents with high boiling points, such as N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide (DMF), but also soluble in common low-boiling-point polar solvents, such as chloroform (CHCl3) and dichloromethane (CH2Cl2), at room temperature. The resulting novel PI showed a 5% weight loss temperature (T5d) at 360 °C under a nitrogen atmosphere. The resulting PI film was colorless and transparent with a transmittance of 87.1% in the visible light region ranging from 400 to 760 nm. The water absorption of the novel PI film was of 1.78%. The PI film also possessed a good moisture barrier and hydrophobicity. Furthermore, the resulting PI film displayed a low dielectric constant of 2.17 at 106 Hz at room temperature. In conclusion, the novel PI film exhibited much better optical transparency, lower moisture absorption, and a lower dielectric constant as well as better solubility than the PMDA-ODA PI film, which is insoluble in any solvent, although its thermal stability is not better than that of PMDA-ODA PI.