Cytokines are small secreted proteins released by cells have a specific effect on the interactions and communications between cells. Cytokine is a general name; other names include lymphokine (cytokines made by lymphocytes), monokine (cytokines made by monocytes), chemokine (cytokines with chemotactic activities), and interleukin (cytokines made by one leukocyte and acting on other leukocytes). Cytokines may act on the cells that secrete them (autocrine action), on nearby cells (paracrine action), or in some instances on distant cells (endocrine action). There are both proinflammatory cytokines and anti-inflammatory cytokines. There is significant evidence showing that certain cytokines/chemokines are involved in not only the initiation but also the persistence of pathologic pain by directly activating nociceptive sensory neurons. Certain inflammatory cytokines are also involved in nerve-injury/inflammation-induced central sensitization, and are related to the development of contralateral hyperalgesia/allodynia. The discussion presented in this chapter describes several key pro-inflammatory cytokines/chemokines and anti-inflammatory cytokines, their relation with pathological pain in animals and human patients, and possible underlying mechanisms.
To develop new OER catalysts to improve efficiency for renewable energy storage, observing oxygen intermediates is essential yet challenging. Herein, based on the electronic structure and chemical property of oxygen intermediates, we design a chemical method to probe oxygen intermediates at operating conditions of OER. Alcohols are demonstrated to be excellent probing molecules to detect oxygen intermediates over various types of catalysts at different reaction media. The general and feasible method could be widely used in every electrochemical laboratory.
Chronic compression of the dorsal root ganglion (CCD) was produced in adult rats by implanting a stainless steel rod unilaterally into the intervertebral foramen, one rod at L(4) and another at L(5). Two additional groups of rats received either a sham surgery or an acute injury consisting of a transient compression of the ganglion. Withdrawal of the hindpaw was used as evidence of a nocifensive response to mechanical and thermal stimulation of the plantar surface. In addition, extracellular electrophysiological recordings of spontaneous discharges were obtained from dorsal root fibers of formerly compressed ganglia using an in vitro nerve-DRG-dorsal root preparation. The mean threshold force of punctate indentation and the mean threshold temperature of heating required to elicit a 50% incidence of foot withdrawal ipsilateral to the CCD were significantly lower than preoperative values throughout the 35 days of postoperative testing. The number of foot withdrawals ipsilateral to the CCD during a 20-min contact with a temperature-controlled floor was significantly increased over preoperative values throughout postoperative testing when the floor was 4 degrees C (hyperalgesia) and, to a lesser extent, when it was 30 degrees C (spontaneous pain). Stroking the foot with a cotton wisp never elicited a reflex withdrawal before surgery but did so in most rats tested ipsilateral to the CCD during the first 2 postoperative weeks. In contrast, the CCD produced no changes in responses to mechanical or thermal stimuli on the contralateral foot. The sham operation and acute injury produced no change in behavior other than slight, mechanical hyperalgesia for approximately 1 day, ipsilateral to the acute injury. Ectopic spontaneous discharges generated within the chronically compressed ganglion and, occurring in the absence of blood-borne chemicals and without an intact sympathetic nervous system, were recorded from neurons with intact, conducting, myelinated or unmyelinated peripheral nerve fibers. The incidence of spontaneously active myelinated fibers was 8.61% for CCD rats versus 0.96% for previously nonsurgical rats. We hypothesize that a chronic compression of the dorsal root ganglion after certain injuries or diseases of the spine may produce, in neurons with intact axons, abnormal ectopic discharges that originate from the ganglion and potentially contribute to low back pain, sciatica, hyperalgesia, and tactile allodynia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.