The electrochemical oxygen reduction reaction in acidic media offers an attractive route for direct hydrogen peroxide (H 2 O 2 ) generation and on-site applications. Unfortunately there is still a lack of cost-effective electrocatalysts with high catalytic performance. Here, we theoretically designed and experimentally demonstrated that a cobalt single-atom catalyst (Co SAC) anchored in nitrogendoped graphene, with optimized adsorption energy of the *OOH intermediate, exhibited a high H 2 O 2 production rate, which even slightly outperformed the state-of-the-art noble-metal-based electrocatalysts. The kinetic current of H 2 O 2 production over Co SAC could reach 1 mA=cm 2 disk at 0.6 V versus reversible hydrogen electrode in 0.1 M HClO 4 with H 2 O 2 faraday efficiency > 90%, and these performance measures could be sustained for 10 h without decay. Further kinetic analysis and operando X-ray absorption study combined with density functional theory (DFT) calculation demonstrated that the nitrogen-coordinated single Co atom was the active site and the reaction was rate-limited by the first electron transfer step.
The Fenton-like process presents one of the most promising strategies to generate reactive oxygen-containing radicals to deal with the ever-growing environmental pollution. However, developing improved catalysts with adequate activity and stability is still a long-term goal for practical application. Herein, we demonstrate single cobalt atoms anchored on porous N-doped graphene with dual reaction sites as highly reactive and stable Fenton-like catalysts for efficient catalytic oxidation of recalcitrant organics via activation of peroxymonosulfate (PMS). Our experiments and density functional theory (DFT) calculations show that the CoN site with a single Co atom serves as the active site with optimal binding energy for PMS activation, while the adjacent pyrrolic N site adsorbs organic molecules. The dual reaction sites greatly reduce the migration distance of the active singlet oxygen produced from PMS activation and thus improve the Fenton-like catalytic performance.
Engineering single-atom electrocatalysts with high-loading amount holds great promise in energy conversion and storage application. Herein, we report a facile and economical approach to achieve an unprecedented high loading of single Ir atoms, up to ∼18 wt %, on the nickel oxide (NiO) matrix as the electrocatalyst for oxygen evolution reaction (OER). It exhibits an overpotential of 215 mV at 10 mA cm −2 and a remarkable OER current density in alkaline electrolyte, surpassing NiO and IrO 2 by 57 times and 46 times at 1.49 V vs RHE, respectively. Systematic characterizations, including X-ray absorption spectroscopy and aberration-corrected Z-contrast imaging, demonstrate that the Ir atoms are atomically dispersed at the outermost surface of NiO and are stabilized by covalent Ir−O bonding, which induces the isolated Ir atoms to form a favorable ∼4+ oxidation state. Density functional theory calculations reveal that the substituted single Ir atom not only serves as the active site for OER but also activates the surface reactivity of NiO, which thus leads to the dramatically improved OER performance. This synthesis method of developing high-loading single-atom catalysts can be extended to other singleatom catalysts and paves the way for industrial applications of single-atom catalysts.
To develop new OER catalysts to improve efficiency for renewable energy storage, observing oxygen intermediates is essential yet challenging. Herein, based on the electronic structure and chemical property of oxygen intermediates, we design a chemical method to probe oxygen intermediates at operating conditions of OER. Alcohols are demonstrated to be excellent probing molecules to detect oxygen intermediates over various types of catalysts at different reaction media. The general and feasible method could be widely used in every electrochemical laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.