To improve the workability in gypsum plasters, additives are sometimes used, including citric acid, which provides acceptable setting times for low w/g ratios, maximizing the mechanical properties of the material. The influence of citric acid on the fire response of gypsum coatings is not well known, and so our aim was to analyze the effects that citric acid produces on the behavior of gypsum plasters exposed to fire. Temperature measurements were made with sensors and thermal imaging cameras while other instrumental techniques, including SEM, XRD and TG, were used to characterize the microstructure and composition of gypsum materials subjected to the action of fire. The fire had a greater effect on gypsum plasters containing citric acid as revealed by the cracking patterns and heat propagation profiles observed. Likewise, micro-cracks were observed in gypsum specimens, containing and non-containing citric acid, exposed to fire. In all cases, the alterations were consistent with the temperature profiles and chemical composition of the faces whether exposed to fire or not.