As an important biological signal, electrocardiogram (ECG) signals provide a valuable basis for the clinical diagnosis and treatment of several diseases. However, its reference significance is based on the effective acquisition and correct recognition of ECG signals. In fact, this mV-level weak signal can be easily affected by various interferences caused by the power of magnetic field, patient respiratory motion or contraction, and so on from the sampling terminal to the receiving and display end. The overlapping interference affects the quality of ECG waveform, leading to the false detection and recognition of wave groups, and thus causing misdiagnosis or faulty treatment. Therefore, the elimination of the interference of the ECG signal and the subsequent wave group identification technology has been a hot research topic, and their study has important significance. Based on the above, this paper introduces two improved adaptive algorithms based on the classical least mean square (LMS) algorithm by introducing symbolic functions and block-processing concepts.
An Ag/AgCl electrode used as a corrosion sensor in a reinforced concrete structure is considered as having good application prospect. However, its performance under complex conditions, such as dry-wet cycle condition, is not affirmed. In the current study, the performance of Ag/AgCl as chloride selective electrode in mortar exposed to dry-wet cycle condition was investigated. A simple Ag/AgCl electrode was prepared and fabricated by electrochemical anodization. These Ag/AgCl electrodes were embedded into a mortar specimen with temperature sensors, humidity sensors and anode ladder monitoring system (ALS). After 28 d curing time, the upper surface of mortar specimen was wetted (with 5% NaCl solution) and dried regularly. The obtained results indicate that Ag/AgCl electrode responds to the ingress of chloride ion, sensitively. The chloride ion concentration variation can be reflected by the potential trend. Furthermore, the balance potential of Ag/AgCl electrodes is influenced by dry-wet cycles. Compared with ALS, it demonstrates that Ag/AgCl electrodes are more sensitive to chloride. The research provides the key element for the specific application of Ag/AgCl electrode for corrosion monitoring in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.