In order to meet the requirement for the real-time of the hydraulic walking robot (WLBOT) and the stability of its movement, an embedded controller is proposed, which takes charge of multi-sensor information processing and signal output of the servo valve. The controller is capable of receiving control command and sending processed information while communicating with an embedded single board computer PCM-3365 via Control Area Network (CAN) bus at a 200 Hz frequency. In this paper, an appropriate interrupt cycle is selected and a 2 kHz high-speed control loop is run after we research the relationship between analog-to-digital converter direct memory access (ADC–DMA) interrupt cycle, data volume, and sampling rate. Significantly, the control strategy of WLBOT joint is introduced and a proportional-integral-derivative (PID) compound controller with velocity feedforward compensation (VFC) is realized. Meanwhile, the Chebyshev filtering algorithm is utilized to attenuate the vibration noise of joint signals. What’s more, an impedance controller is designed to gain better locomotion behavior and compliance in joint force control. Finally, the joint angle tracking and robot walking experiments are implemented, where the feasibility of the design and the validity of the control algorithm is verified. The results show that the PID velocity feedforward compensation controller can reduce the maximum tracking error by 39.13% and 71.31% in the knee and hip joint and the impedance control can reduce the standard deviation (SD) of the foot force by 36.06% and 72.79%.