2008
DOI: 10.1117/12.794196
|View full text |Cite
|
Sign up to set email alerts
|

Forces acting between polishing tool and workpiece surface in magnetorheological finishing

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

2
4
0
1

Year Published

2012
2012
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 14 publications
(7 citation statements)
references
References 23 publications
2
4
0
1
Order By: Relevance
“…The normal force of 3-10 N in this process is comparable to those obtained from the conventional MRF process, for instance, 6-9 N reported by Miao et al [24] and 2-20 N reported by Schihaerl et al [25]. However, the polishing contact area of 2500 mm 2 using our developed PM yoke with a straight air gap was much larger than those using the conventional electromagnets, such as the areas of 36-54 mm 2 reported in [24] and 28 mm 2 in [25].…”
Section: Polishing Forcesupporting
confidence: 87%
See 3 more Smart Citations
“…The normal force of 3-10 N in this process is comparable to those obtained from the conventional MRF process, for instance, 6-9 N reported by Miao et al [24] and 2-20 N reported by Schihaerl et al [25]. However, the polishing contact area of 2500 mm 2 using our developed PM yoke with a straight air gap was much larger than those using the conventional electromagnets, such as the areas of 36-54 mm 2 reported in [24] and 28 mm 2 in [25].…”
Section: Polishing Forcesupporting
confidence: 87%
“…The normal force of 3-10 N in this process is comparable to those obtained from the conventional MRF process, for instance, 6-9 N reported by Miao et al [24] and 2-20 N reported by Schihaerl et al [25]. However, the polishing contact area of 2500 mm 2 using our developed PM yoke with a straight air gap was much larger than those using the conventional electromagnets, such as the areas of 36-54 mm 2 reported in [24] and 28 mm 2 in [25]. Therefore, the shear and normal stresses of ∼3.6-15 kPa and ∼1.2-4 kPa in our process are considerably smaller than the shear stress of ∼80-110 kPa in [24] and normal stresses of ∼160-190 kPa in [24] and ∼71-714 kPa in [25].…”
Section: Polishing Forcesupporting
confidence: 87%
See 2 more Smart Citations
“…proved that the cluster magnetorheological variable gap dynamic pressure planarization finishing is feasible and effective. Key words:cluster magnetorheological planarization finishing;variable gap dynamic pressure;planarization finishing;surface roughness;material removal rate 0 前言 随着 5G 通讯、人工智能等高新技术的发展, 对光电晶片超光滑平坦化加工提出了更高的要求。 目前,光电晶片平坦化加工的主流技术仍然是以游 离磨料机械去除和化学反应复合的化学机械 抛 光 [1] ,其中晶片与抛光工具为刚性接触状态,磨料 粒径不均匀容易产生晶片表面、亚表面损伤和残余 应力等加工缺陷,同时导致抛光垫磨损、失效,严 重影响晶片的加工品质和加工成本。 磁流变抛光作为确定性抛光方法,磨料通过柔 性去除实现加工,具有去除函数稳定、加工过程可 控、加工表面不产生亚表面损伤等优点而被广泛 应用于光学加工 [2][3] 。FENG 等 [4] 利用磁流变抛光 抛光大型蓝宝石光 学窗口,获得 PV 约为 λ/15、表面粗糙度 RMS 为 0.8 Å 的超光滑表面。然而,经典磁流变抛光过程中 工件与"抛光缎带"为"斑点"局部接触,需要用 轨迹扫描的方式才可以加工整体表面,加工效率 低 [4] 。为了提高加工效率和质量,磁流变抛光垫与 工件"面-面"接触的集群磁流变平面抛光等方法被 提出 [6] ,利用该方法加工 2 英寸(1 英寸=2.54 cm)碳 化硅晶片 30 min, 表面粗糙度从 Ra72.89 nm 迅速降 低至 1.9 nm [6] ;在此基础上将静态磁场变换为多磁 极旋转动磁场,对单晶碳化硅、单晶硅片、钛酸锶、 磷化铟等基片进行抛光,获得了纳米级甚至埃米级 的表面粗糙度 [7][8][9] ,但抛光压力动态稳定性是制约集 群磁流变抛光效率的重要因素 [10] 。为研究磁流变抛 光过程中的抛光压力,SCHINHAERL 等 [11] 采用三 向测力仪测量在磁流变抛光过程中磁流变液形成的 缎带经过楔形间隙时对工件表面的作用力,发现当 使用 50 mm 的抛光轮时所测的法向力在 2~20 N 之 间,工件越靠近抛光轮,受到的作用力越大。MIAO 等 [12] 发现法向力与切向力随着金刚石磨料质量分数 的增加而增大,但随着金刚石磨粒浓度的进一步增 大最终保持在一个稳定值,随着压入抛光缎带深度 的增加,法向力与剪切力明显增大。梁华卓等 [13] 研 究了加工参数对抛光力的影响,发现抛光力 F n 和 F t 随转速的增大而增大, 随加工间隙的增大而减少, 随磨粒浓度和羰基铁粉浓度的增大而增大,随偏摆 幅度的增大抛光力略有增大。付有志等 [14] 人研究了 抛光盘结构对抛光力的影响,发现抛光压力随楔形 角和工作间隙的增大而减少,随楔形区宽度的增大 而增大。TAO 等 [15][16] 发现磁流变液在挤压作用下可 以提供较大作用力,其他学者也发现了该规律并提 出了磁流变液的挤压强化效应。但这方面的研究目 前主要侧重于理论分析…”
unclassified