2018
DOI: 10.15294/sji.v5i2.14613
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting Inflation Rate Using Support Vector Regression (SVR) Based Weight Attribute Particle Swarm Optimization (WAPSO)

Abstract: Data mining is the process of finding patterns or interesting information in selected data by using a particular technique or method. Utilization of data mining one of which is forecasting. Various forecasting methods have progressed along with technological developments. Support Vector Regression (SVR) is one of the forecasting methods that can be used to predict inflation. The level of accuracy of forecasting is determined by the precision of parameter selection for SVR. Determination of these parameters can… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
5

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 10 publications
(12 citation statements)
references
References 10 publications
0
7
0
5
Order By: Relevance
“…Data deret waktu merupakan jenis data yang sering dikembangkan untuk kasus peramalan. Peramalan yang menggunakan data deret waktu dalam perkembangannya menunjukkan bahwa keakuratan peramalan dapat ditingkatkan dengan menggabungkan beberapa model dengan kombinasi daripada hanya menggunakan salah satu model terbaik [5].…”
Section: Data Time Seriesunclassified
See 1 more Smart Citation
“…Data deret waktu merupakan jenis data yang sering dikembangkan untuk kasus peramalan. Peramalan yang menggunakan data deret waktu dalam perkembangannya menunjukkan bahwa keakuratan peramalan dapat ditingkatkan dengan menggabungkan beberapa model dengan kombinasi daripada hanya menggunakan salah satu model terbaik [5].…”
Section: Data Time Seriesunclassified
“…Maka dari itu metode yang dipilih untuk menormalisasi data adalah metode min-max dikarenakan metode normalisasi ini menskalakan ulang secara Linear data dari satu rentang nilai untuk rentang baru nilai-nilai, seperti [0,1] atau [-1,1]. Proses normalisasi dilakukan sebelum melakukan pelatihan menggunakan SVR dengan menggunakan rumus [5]:…”
Section: Normalisasi Dan Denormalisasi Dataunclassified
“…The transformation process is carried out using min-max normalization, as shown in (1). This normalization can accelerate the learning process involving data in the same scale value [17].…”
Section: Data Preprocessingmentioning
confidence: 99%
“…SVR is also proven to be better than Backpropagation for forecasting oil palm production [16]. However, similar to SVM, SVR cannot determine the appropriate parameters to produce optimal results, whereas the selection of appropriate parameters will be able to improve the accuracy of the results produced [17].…”
Section: Introductionmentioning
confidence: 99%
“…The SVR method can also be added with the use of optimization and one of the optimizations is by using Particle Swarm Optimization (PSO). Where the addition of PSO optimization can improve the accuracy of the forecasting done [10].…”
Section: Introductionmentioning
confidence: 99%