2005
DOI: 10.1002/for.940
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting nonlinear time series with feed-forward neural networks: a case study of Canadian lynx data

Abstract: The forecasting capabilities of feed-forward neural network (FFNN) models are compared to those of other competing time series models by carrying out forecasting experiments. As demonstrated by the detailed forecasting results for the Canadian lynx data set, FFNN models perform very well, especially when the series contains nonlinear and non-Gaussian characteristics. To compare the forecasting accuracy of a FFNN model with an alternative model, Pitman's test is employed to ascertain if one model forecasts sign… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
44
0
3

Year Published

2006
2006
2021
2021

Publication Types

Select...
4
2
2

Relationship

0
8

Authors

Journals

citations
Cited by 63 publications
(47 citation statements)
references
References 24 publications
0
44
0
3
Order By: Relevance
“…ANN application areas includes data classification and pattern recognition (Ripley, 1996), damage detection and earthquake simulation (Pei et al, 2006), function approximation (Toh, 1999;Ye and Lin, 2003), material science (Bhadeshia, 1999), experimental design of engineering systems (Röpke et al, 2005), nonlinear optimization (Malek et al, 2010), polypeptide structure prediction (Dorn and de Souza, 2010), prediction of trading signals of stock market indices (Tilakaratne et al, 2008), regression analysis (De Veux et al, 1998), signal and image processing (Watkin, 1993;Masters, 1994), time series analysis and forecasting (Franses and van Dijk, 2000;Kajitani et al, 2005).…”
Section: Discussionmentioning
confidence: 99%
“…ANN application areas includes data classification and pattern recognition (Ripley, 1996), damage detection and earthquake simulation (Pei et al, 2006), function approximation (Toh, 1999;Ye and Lin, 2003), material science (Bhadeshia, 1999), experimental design of engineering systems (Röpke et al, 2005), nonlinear optimization (Malek et al, 2010), polypeptide structure prediction (Dorn and de Souza, 2010), prediction of trading signals of stock market indices (Tilakaratne et al, 2008), regression analysis (De Veux et al, 1998), signal and image processing (Watkin, 1993;Masters, 1994), time series analysis and forecasting (Franses and van Dijk, 2000;Kajitani et al, 2005).…”
Section: Discussionmentioning
confidence: 99%
“…This data consists of the set of annual numbers of lynx trappings in the Mackenzie River District of North-West Canada for the period from 1821 to 1934. The Canada lynx data, which is plotted in Figure 1, was also examined by Kajitani et al [16], beyond the other various studies in the time series literature with a focus on the nonlinear modeling [17]. Following other studies, the logarithms (to the base 10) of the data is used in the analysis.…”
Section: Application Of the Hybrid Methodologymentioning
confidence: 99%
“…NN zur Modellierung und Prognose von Zeitreihen wurden in zahlreichen Anwendungsgebieten eingesetzt, z.B. Sonnenfleckenzeitreihen (Weigend et al, 1990;Medeiros et al, 2006), Flugverkehrzeitreihen (Faraway und Chatfield, 1998), betriebswirtschaftliche Zeitreihen (Balkin und Ord, 2000), Zeitreihen zu Fangzahlen von Luchsen (Zhang, 2003;Kajitani et al, 2005), Elektrizitätsverbrauchszeitreihen (Darbellay und Slama, 2000;Hippert et al, 2001Hippert et al, , 2005, Aktien-und Wechselkurse (Weigend et al, 1990;Refenes et al, 1994;Franses und van Griensven, 1997).…”
Section: Neuronale Netze Zur Zeitreihenmodellierung Und -Prognose Imüunclassified