2023
DOI: 10.20956/j.v19i3.24551
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting The Search Trends of The Keyword “Sarung Wadimor” In Indonesia on Google Trends Data Using Time Series Regression with Calender Variation and Arima Box-Jenkins

Abstract: The impact of this 4.0 era is that data is growing and can be collected very easily and then reprocessed to obtain information. One of the search engines for various data and information that is often used is Google, causing a high search intensity and will further impact on increasing the amount of data generated by search engines. Google Trends is one of the official websites from Google that reflects or takes pictures of events in society based on search keywords. The search keyword that will be studied in … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2023
2023
2025
2025

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 11 publications
0
0
0
1
Order By: Relevance
“…Beberapa penelitian sebelumnya yang mengaplikasikan model ARIMAX pada data google trends diantaranya Lingga, dkk (2021) dalam penelitiannya menerapkan metode variasi kalender ARIMAX untuk pemodelan dan peramalan kedatangan wisatawan ke tempat wisata dengan google trends [21]. Dani, dkk (2023) melakukan peramalan tren pencarian kata kunci "Sarung Wadimor" di Indonesia menggunakan model time series regression with calender variation dan ARIMA Box-Jenkins [22].…”
Section: Pendahuluanunclassified
“…Beberapa penelitian sebelumnya yang mengaplikasikan model ARIMAX pada data google trends diantaranya Lingga, dkk (2021) dalam penelitiannya menerapkan metode variasi kalender ARIMAX untuk pemodelan dan peramalan kedatangan wisatawan ke tempat wisata dengan google trends [21]. Dani, dkk (2023) melakukan peramalan tren pencarian kata kunci "Sarung Wadimor" di Indonesia menggunakan model time series regression with calender variation dan ARIMA Box-Jenkins [22].…”
Section: Pendahuluanunclassified