The impact of this 4.0 era is that data is growing and can be collected very easily and then reprocessed to obtain information. One of the search engines for various data and information that is often used is Google, causing a high search intensity and will further impact on increasing the amount of data generated by search engines. Google Trends is one of the official websites from Google that reflects or takes pictures of events in society based on search keywords. The search keyword that will be studied in this article is “Sarung Wadimor”. Therefore, the purpose of this research is to forecast the search trend for the keyword "Sarung Wadimor" which is interesting because the resulting time series data pattern shows a recurring pattern due to the effect of calendar variations which are thought to be related to the month of Ramadan. Forecasting modeling uses Autoregressive Integrated Moving Average (ARIMA) and Time Series Regression (TSR). The goodness of the model used in this article is the Mean Square Error (MSE), Root Mean Square Error (RMSE), and Symmetric Mean Absolute Percentage Error (SMAPE). Based on the results of the analysis, using three goodness-of-fit measures shows that the TSR model with the Calendar Variation of Ramadan + Month Periods has smaller MSE, RMSE, and SMAPE values than the other models with goodness-of-fit values of 88.602, 9.413, and 26.950, respectively. Forecasting results for the next 6 periods show that the search trend for the keyword "Sarung Wadimor" tends to decrease, this is because the month of Ramadan is still quite far in 2023.
Extreme rainfall is an unpredictable phenomenon which causes suffering effect such as flooding. Located on the Equator area, Indonesia results in a high intensity of extreme rainfall. Initial information regarding the patterns, characteristics, and rainfall prediction is needed in order to minimize the negative effect of such phenomenon. A method that can be used to predict extreme rainfall is the spatial extreme value using the copula approach. The copula approach used in this study is student-t copula. The Generalized Extreme Value (GEV) distribution used for the student-t copula with parameter estimation is Pseudo-Maximum Likelihood Estimation (PMLE). The proposed method was applied to model the extreme rainfall atNgawi Regency. An extreme spatial dependency on location is shown by extreme coefficient graphic. The best model that is obtained is based on Akaike Information Criteriation’s (AIC) lowest value. The best model then continues to be used to predict the rainfall intensity return level. The prediction result of the rainfall intensity return level value shows that the maximum value of rainfall intensity increases from year to year in each station.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.