Abstract:The processing of woody biomass waste piles for use as fuel instead of burning them was investigated. At each landing of slash pile location, a 132 kW grapple excavator was used to transfer the waste piles into a 522 kW horizontal grinder. Economies of scale could be expected when grinding a larger pile, although the efficiency of the loading operation might be diminished. Here, three piles were ground and the operations were time-studied: Small (20 m long × 15 m wide × 4 m high), Medium (30 × 24 × 4 m), and Large (35 × 30 × 4 m) piles. Grinding the Medium pile was found to be the most productive at 30.65 bone dry tons per productive machine hour without delay (BDT/PMH 0 ), thereby suggesting that there might be an optimum size of slash pile for a grinding operation. Modeling of the excavator and grinder operations was also examined, and the constructed simulation model was observed to well-replicate the actual operations. Based on the modeling, the productivity of grinding at a landing area of 710 m 2 of slash pile location was estimated to be 31.24 BDT/PMH 0 , which was the most productive rate.