Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction. An increase in the efficiency of snow removal work is due to an improvement in the characteristics of all components of this process, however, the creation of fundamentally new design schemes for snow blowers allows us to make qualitative changes in the problem of winter maintenance of roads, residential areas, etc. Materials and methods. A description of analytical studies of the dependence describing the design parameters of the feeder cutter for a rotary-milling snow blower is presented, on the basis of which the concept of a fundamentally new design of the feeder for a rotary-milling snow blower is formed. The description of the mathematical model of the presented design of the feeder is given.The structural scheme of the vertical cutter of the feeder of the rotary-milling snow blower is presented. Described are the main assumptions made in the compilation of the design scheme for the operation of the vertical cutter of the feeder of the rotary-milling snow blower. Equations have been obtained that describe the movement of a group of snow particles transported by a vertical mill and interact with each other in the process of movement, analytical dependences of the forces of normal reactions of the working elements of a vertical miller on its design and technological parameters. The initial conditions for the numerical solution of the presented equations of operation of the vertical milling cutter of the feeder of a rotary-milling snow blower are described.Results. The structural scheme of the vertical cutter of the feeder of the rotary-milling snow blower is described. Described are the main assumptions made in the compilation of the design scheme for the operation of the vertical cutter of the feeder of the rotary-milling snow blower. Equations are obtained that describe the movement of a group of snow particles transported by a vertical mill and interact with each other in the process of movement, analytical dependences of the forces of normal reactions of the working elements of a vertical mill on its design and technological parameters. The initial conditions necessary for the numerical solution of the presented equations of operation of the vertical milling cutter of the feeder of the milling-rotary snow blower are determined.Discussion and conclusion. The description of the mathematical model of the original design of the feeder of the throw-away snow blower is given. The necessity of a more complete substantiation of the initial conditions for the numerical solution of the equations of the work of the feeder of the throwing snow blower is indicated. This mathematical model makes it possible to proceed to a detailed study of the described cutter design in order to determine the working ranges of the design and technological parameters of the feeder with a vertical cutter.
Introduction. An increase in the efficiency of snow removal work is due to an improvement in the characteristics of all components of this process, however, the creation of fundamentally new design schemes for snow blowers allows us to make qualitative changes in the problem of winter maintenance of roads, residential areas, etc. Materials and methods. A description of analytical studies of the dependence describing the design parameters of the feeder cutter for a rotary-milling snow blower is presented, on the basis of which the concept of a fundamentally new design of the feeder for a rotary-milling snow blower is formed. The description of the mathematical model of the presented design of the feeder is given.The structural scheme of the vertical cutter of the feeder of the rotary-milling snow blower is presented. Described are the main assumptions made in the compilation of the design scheme for the operation of the vertical cutter of the feeder of the rotary-milling snow blower. Equations have been obtained that describe the movement of a group of snow particles transported by a vertical mill and interact with each other in the process of movement, analytical dependences of the forces of normal reactions of the working elements of a vertical miller on its design and technological parameters. The initial conditions for the numerical solution of the presented equations of operation of the vertical milling cutter of the feeder of a rotary-milling snow blower are described.Results. The structural scheme of the vertical cutter of the feeder of the rotary-milling snow blower is described. Described are the main assumptions made in the compilation of the design scheme for the operation of the vertical cutter of the feeder of the rotary-milling snow blower. Equations are obtained that describe the movement of a group of snow particles transported by a vertical mill and interact with each other in the process of movement, analytical dependences of the forces of normal reactions of the working elements of a vertical mill on its design and technological parameters. The initial conditions necessary for the numerical solution of the presented equations of operation of the vertical milling cutter of the feeder of the milling-rotary snow blower are determined.Discussion and conclusion. The description of the mathematical model of the original design of the feeder of the throw-away snow blower is given. The necessity of a more complete substantiation of the initial conditions for the numerical solution of the equations of the work of the feeder of the throwing snow blower is indicated. This mathematical model makes it possible to proceed to a detailed study of the described cutter design in order to determine the working ranges of the design and technological parameters of the feeder with a vertical cutter.
Introduction. The complexity and laboriousness of determining the functional dependencies between the structural elements of a rotary snowplow and the developed snow mass when conducting experimental studies on a physical model of a rotary snowplow necessitates the development of mathematical models that make it possible to describe as accurately as possible the processes of interaction between the elements of a rotary snowplow and snow mass. The method of research. A mathematical model of the process of transporting snow mass in a rotor, in which snow is represented as a loose medium, including a set of individual particles, was developed using the method of discrete elements. When constructing a mathematical model, the problems of identifying mass and surface forces acting in the ‘rotor - snow mass’ system were solved. The principle of the location of a group of particles in the interblade space of the snowplow rotor and the choice of the method for analyzing the mathematical model are substantiated.Results. The implementation of this mathematical model on a computer made it possible to obtain the numerical values of the forces of the normal reaction of the rotor casing at each moment of time, which allows developing new and improving existing design schemes, reasonably choosing the design and technological parameters of the rotor of a snow blower.Discussion and conclusion. The proposed mathematical model and the equations of motion, compiled on its basis, make it possible to unambiguously determine the values of all forces acting on the snow mass during its transportation in the rotor of a rotary snowplow. The model under consideration makes it possible to simulate a snow mass in the interblade space of a more complex configuration and a set of particles that have an irregular distribution in size and relative position.
The work objective is to assess the effect of cutter band angle on the power required for transporting the snow by the cutter feeder of the rotary snowplow and its performance, taking into account the interaction of snowflakes with each other. The problem to which the paper is devoted is to find out the influence of the angle, the size of the transported particles on the productivity of the feeder cutter and the power spent on moving the snow as a group of interacting flakes of finite size. Research methods: theoretical studies and simulation of the feeder cutter operation during transportation of snow as a group of interacting flakes of finite size. The novelty of the work lies in the fact that simulation, for the first time, gives theoretical description of changes in the productivity of a cutter and rotary snowplow feeder of and the power costs for transporting snow depending on the cutter band angle and the typical size of snowflakes in conditions of their interaction with each other, and also approximating equations of changes in productivity and power costs depending on the cutter band angle and typical size of snowflakes. The study results show that an increase in the cutter band angle leads to a nonlinear increase in power costs for transporting snowflakes, described by a fourth degree polynomial. An increase in the typical flake size of the transported snow in the cutter feeder of the rotary snowplow also causes a nonlinear increase in the power costs for transporting snow, which is described by a second degree polynomial. The increase in productivity with an increase in the cutter band angle is described by a fourth degree polynomial, and with an increase in the typical flake size by the third degree one. The areas of maximum power consumption and maximum productivity have an offset relative to each other in the coordinates of the typical flake size and the cutter band angle. Conclusions: the influence of the cutter band angle and the size of transported snowflakes on the main parameters of the cutter feeder operation are defined. The results of theoretical studies correlate with the results of practical studies, which indicates the feasibility of using a mathematical model that takes into account the interaction of transported snowflakes in further studies aimed at improving the efficiency of feeder of the rotary snowplows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.