Abstract. Many scientific applications require high-performance concurrent I/O accesses to a file by multiple processes. Those applications rely indirectly on atomic I/O capabilities in order to perform updates to structured datasets, such as those stored in HDF5 format files. Current support for atomicity in MPI-IO is provided by locking around the operations, imposing lock overhead in all situations, even though in many cases these operations are non-overlapping in the file. We propose to isolate non-overlapping accesses from overlapping ones in independent I/O cases, allowing the nonoverlapping ones to proceed without imposing lock overhead. To enable this, we have implemented an efficient conflict detection algorithm in MPI-IO using MPI file views and datatypes. We show that our conflict detection scheme incurs minimal overhead on I/O operations, making it an effective mechanism for avoiding locks when they are not needed.