Due to the strong plasticity of Inconel 718 and the significant size effect of micromachining, a large number of burrs will be produced in traditional processing. The addition of ultrasonic vibration during machining can reduce the burr problem. The mechanism of burr generation in traditional micromilling (TMM) and ultrasonic vibration-assisted micromilling (UVAMM) was analyzed by simulation, and verified by corresponding experiments. It is found that applying high-frequency ultrasonic vibration in the milling feed direction can reduce cutting temperature and cutting force, improve chip breaking ability, and reduce burr formation. When the cutting thickness will reach the minimum cutting thickness hmin, the chip will start to form. When A/ƒz > 1/2, the tracks of the two tool heads start to cut, and the chips are not continuous. Some of the best burr suppression effects were achieved under conditions of low cutting speed (Vc), feed per tooth (ƒz), and large amplitude (A). When A is 6 μm, the size and quantity of burr is the smallest. When ƒz reaches 6 μm, large continuous burrs appear at the top of the groove. The experimental results further confirm the accuracy of the simulation results and provide parameter reference.