Mustaffa, NIH, et al 2017 High-resolution variability of the enrichment of fluorescence dissolved organic matter in the sea surface microlayer of an upwelling region. Elem Sci Anth, 5: 52, DOI: https://doi.org/10.1525/elementa.242
IntroductionThe uppermost part of the ocean, covering approximately 70% of the surface is defined as the sea surface microlayer (SML) (Liss and Duce, 2005). Due to its unique position between the atmosphere and ocean, the SML plays an important role in biogeochemical processes, including the marine carbon cycle, photochemistry and air-sea exchange of climate-relevant gases. All materials exchanged between the ocean and atmosphere, including gases, particulate organic matter, and sea salt, have to pass through the SML (Liss and Duce, 2005). With a total thickness between 1 µm and 1000 µm, depending on the sampling technique (Shinki et al., 2012) and region of interest (Hardy, 1982), the SML remains sufficiently stable at a global average wind speed of 6.6 m s -1 (Wurl et al., 2011b) to control the rate of air-sea exchange of gases and heat, highlighting its global relevance. It is well established that the SML has unique physical, chemical, and biological properties that differ from those of the wellmixed underlying water masses (Hardy, 1982;Cunliffe et al., 2013). Biological and physical processes in the water column, such as primary productivity, diffusion, buoyancy flux, and rising bubbles, are the main factors determining the enrichment of chemical compounds and microbes in the SML (Wurl et al., 2009;Stolle et al., 2010). Enriched materials include surface-active dissolved organic matter (DOM) (e.g., carbohydrates, proteins and lipids) and particulate organic matter (POM), as well as autotrophic and heterotrophic cells (Williams et al., 1986;Cunliffe et al., 2009). Fluorescence dissolved organic matter (FDOM) is a fraction of chromophoric DOM (CDOM) which not only absorbs but also emits a blue fluorescence when it is irradiated with ultraviolet (UV) light (Coble, 2007). FDOM is often used as an indicator for humic-like marine DOM (Yamashita and Tanoue, 2009) and frequently enriched in the SML (Zhang and Yang, 2013) due to its hydrophobic properties.CDOM enrichment in the SML is of particular interest due to its active role in photochemistry (de Bruyn et al., 2011), as the SML is the part of the ocean with the highest exposure to radiation. For this reason, some photochemical reactions in the SML can be unique (Carlson, 1993), and the SML may act as microreactor (Blough, 2005), including changing the composition of surface active species
RESEARCH ARTICLEHigh-resolution variability of the enrichment of fluorescence dissolved organic matter in the sea surface microlayer of an upwelling region Nur Ili Hamizah Mustaffa, Mariana Ribas-Ribas and Oliver Wurl Enrichment of fluorescence dissolved organic matter (FDOM) in the sea surface microlayer (SML) provides insights into biogeochemical processes occurring at the sea surface, including cycling of organic matter, photochemistry, and air-se...