1976
DOI: 10.1143/ptp.56.1719
|View full text |Cite
|
Sign up to set email alerts
|

Formation and Interaction of Sonic-Langmuir Solitons: Inverse Scattering Method

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

6
178
0
3

Year Published

1978
1978
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 331 publications
(187 citation statements)
references
References 4 publications
6
178
0
3
Order By: Relevance
“…However, it should be noted that the matrix DNLS flows are not the only class of systems that permit the reductions of the latter type exploited in this paper. As an illustrative example, let us consider the matrix generalization of the Yajima-Oikawa system [49] System (4.4) allows an extension of the typical reduction considered in this paper, that is, R = CQ T and P T = P or R = Q T C and P T C = CP , where C is an antisymmetric constant matrix. In particular, the vector reduction in the former case changes the matrix system (4.4) into the following system [51,56]: It is noted that this system is a modification of the triangular system comprising the KdV equation and time part of the associated linear problem due to the addition of the last summation term.…”
Section: Discussionmentioning
confidence: 99%
“…However, it should be noted that the matrix DNLS flows are not the only class of systems that permit the reductions of the latter type exploited in this paper. As an illustrative example, let us consider the matrix generalization of the Yajima-Oikawa system [49] System (4.4) allows an extension of the typical reduction considered in this paper, that is, R = CQ T and P T = P or R = Q T C and P T C = CP , where C is an antisymmetric constant matrix. In particular, the vector reduction in the former case changes the matrix system (4.4) into the following system [51,56]: It is noted that this system is a modification of the triangular system comprising the KdV equation and time part of the associated linear problem due to the addition of the last summation term.…”
Section: Discussionmentioning
confidence: 99%
“…B 5 and B 3 are given in equations (13) and (14). There are several even-reductions of the KP hierarchy as following,…”
Section: Lower and Higher Order Reductionsmentioning
confidence: 99%
“…Когда одна из коротковолновых компонент Φ + или Φ − тождественно равна нулю, эта система переходит в обычную (скалярную) систему ЯО [10]. В работе [31] (2 + 1)-мерный вариант системы (27) рассматривался в рамках метода Хироты.…”
Section: исключение материальных переменных векторные обобщения систunclassified
“…Соответствующая система двух нелинейных волновых уравнений получила название уравнений Захарова. Ее однонаправленный вариант, известный как система Ядзимы-Ойкавы (ЯО), оказался интегрируемым с помощью МОЗР [10]. Это обстоятельство позволило существенно продвинуться в понимании особенностей совместной нелинейной динамики длин-ных и коротких волн.…”
Section: Introductionunclassified