In this article, a distributed cooperative path-maneuvering control approach is developed for the region-searching of multiple autonomous underwater vehicles under both dynamic uncertainties and ocean currents. Salient contributions are as follows: (1) by virtue of boustrophedon motions and trigonometric functions, the coverage path-planning design is first proposed to generate multiple parameterized paths, which can guarantee that the region-searching is successfully completed by one trial; (2) combining with sliding mode and adaptive technique, distributed maneuvering control laws for surge and yaw motions are employed to drive vehicles to track the assigned paths, thereby contributing to the cooperative maneuvering performance with high accuracy; (3) by the aid of graph theory, the distributed signal observer-based consensus protocols are developed for path parameter synchronization, and successfully apply to maintain the desired formation configuration. The globally asymptotical stability of the closed-loop signals is analyzed via the direct Lyapunov approach, and simulation studies on WL-II are conducted to illustrate the remarkable performance of the proposed path-maneuvering control approach.