Grapevine (Vitis vinifera L.) fruit crops are a significant source of antioxidants, fibre, and nutrients; all are vital for a healthy diet and play a key role in the economy of several advanced and developing countries. It is of great importance to generate true-to-type plant products using in vitro propagation system. Thus, somaclonal variations can multiply very rapidly which leads to loss of the main features of parent rootstocks. In this research, a mixture of three Polymerase Chain Reaction (PCR)-based molecular marker methods – (conserved DNA derived polymorphism) CDDP, (Inter-simple sequence repeat) ISSR, and DNA barcoding – have been used to verify micro propagated grapevine genetic stability. Both ISSR and CDDP primer combinations produced scorable PCR fragments. The total number of bands was 98 and 109, with an average of 9.8 and 10.9 bands/primer in ISSR and CDDP assays, respectively. On the other hand, about 20 polymorphic bands were collected by CDDP primers, of CDDP-3 and CDDP-11produced 1 and 5 bands, with a polymorphism percentage of 11% and 33%, respectively. About 5 different unique PCR bands were detected in the mother plant (control) and were not observed in micro propagated plantlets (MP) samples of grapevine plant or vice versa. The phylogenetic trees were constructed using ISSR and CDDP assays diverged the control from MP samples at 1.3% and 7%, respectively. The phylogenetic tree constructed using (chloroplast gene RNA polymerase1) rpoC1 gene, multiple sequence alignment revealed that rpoC1 gene sequencing detected small genetic differences between control and MP samples of the grapevine and clustered grapevine control and MP samples to a single cluster with other Vitis species. This experiment reveals the potentiality of using CDDP, ISSR, and DNA barcoding in detecting the somaclonal variation of grapevine varieties subjected to tissue culture as a tool for plant conservation and breeding programs.