Various sizes and shapes of Mn 3 O 4 nanocrystals have been prepared in a one-pot synthesis in extremely dilute solution by soft template self-assembly. To better control size and shape, the effects of varying the growth time, reaction temperature, surfactant, and manganese source were examined. The average size of octahedral Mn 3 O 4 crystallites was found to be related to the reaction time, while higher reaction temperature (150 °C ) and the use of a cetyltrimethylammonium bromide/poly(vinylpyrrolidone) (CTAB/PVP) mixture allowed construction of a better-defined octahedral morphologies. When PVP or poly(ethylene oxide)-poly(propylene oxide) (P123) was used as template, large-scale agglomeration resulting in loss of the octahedral morphology occurred and crystallites with a quasi-spherical shape were obtained. The nano-octahedral crystallites were shown to be an efficient catalyst for the oxidation of methylene blue.