We propose a method to produce, in a pulsed or continuous way, cold samples of highly polar molecules. Using a pulsed or continuous standard (supersonic) beam of these molecules, our idea consists of transforming the molecules into their anionic counterparts, which are decelerated to a standstill by a well-controlled external electric field and ultimately neutralized. The neutral-to-anion transformation occurs through collisions with Rydberg atoms coming from an additional atomic beam. This Rydberg electron transfer process is possible provided that the molecular species has a sufficiently strong electric dipole (>2.5 D, i.e., > × − 8.3 10 30 cm). Whatever the mass of the species, the deceleration stage is realized by a temporally and spatially controlled electric field within a range of less than one centimeter, which is much shorter than in current deceleration experiments of neutral molecules. Once stopped, the molecular anions are neutralized by laser photodetachment or a pulsed electric field process. The resulting molecules might be held and accumulated, for instance, in a magnetic trap.