Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.
Capillary electrophoresis-mass spectrometry (CE-MS) is a powerful tool in various fields including proteomics, metabolomics, and biopharmaceutical and environmental analysis. Nanoflow sheath liquid (SL) CE-MS interfaces provide sensitive ionization, required in these fields, but are still limited to a few research laboratories as handling is difficult and expertise is necessary. Here, we introduce nanoCEasy, a novel nanoflow SL interface based on 3D printed parts, including our previously reported two capillary approach. The customized plug-and-play design enables the introduction of capillaries and an emitter without any fittings in less than a minute. The transparency of the polymer enables visual inspection of the liquid flow inside the interface. Robust operation was systematically demonstrated regarding the electrospray voltage, the distance between the emitter and MS orifice, the distance between the separation capillary and emitter tip, and different individual emitters of the same type. For the first time, we evaluated the influence of high electroosmotic flow (EOF) separation conditions on a nanoflow SL interface. A high flow from the separation capillary can be outbalanced by increasing the electrospray voltage, leading to an overall increased electrospray flow, which enables stable operation under high-EOF conditions. Overall, the nanoCEasy interface allows easy, sensitive, and robust coupling of CE-MS. We aspire the use of this sensitive, easy-to-use interface in large-scale studies and by nonexperts.
This work summarizes the methodical capabilities, improvements, and new developments in the radiocarbon laboratory of the accelerator mass spectrometry (AMS) facility at the University of Cologne, Germany, which was established in 2010. During the past years, the laboratory has specialized in the analysis of small and gaseous samples. We thus, recently installed a second ion source dedicated for radiocarbon (14C) analysis of CO2 samples at our 6 MV Tandetron AMS from High Voltage Engineering Europe B.V. that is coupled with the gas injection system from Ionplus and an EuroVector EA 3000 elemental analyzer. This work summarizes all pretreatment methods and analytical facilities established in our laboratory during the last years including 14C analysis of individual organic compounds and of CO2 trapped on molecular sieves. We also report different blank values including our long-term blank since 2011, which is for normal-sized, solid samples (650–1000 µg C) 0.0012 ± 0.0004 F14C (54,305 ± 2581 yr BP, n = 484). The precision obtained for modern samples measured as graphite is 0.5% and for gaseous samples injected with the GIS ≤2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.