Soils are the product of a complex suite of chemical, biological, and physical processes. In spite of the importance of soils for society and for sustaining life on earth, our knowledge of soil formation rates and of the influence of biological activity on mineral weathering and geochemical cycles is still limited. In this paper we provide a description of the Damma Glacier Critical Zone Observatory and present a first synthesis of our multidisciplinary studies of the 150-yr soil chronosequence. The aim of our research was to improve our understanding of ecosystem development on a barren substrate and the early evolution of soils and to evaluate the influence of biological activity on weathering rates. Soil pH, cation exchange capacity, biomass, bacterial and fungal populations, and soil organic matter show clear gradients related to soil age, in spite of the extreme heterogeneity of the ecosystem. The bulk mineralogy and inorganic geochemistry of the soils, in contrast, are independent of soil age and only in older soils (>100 yr) is incipient weathering observed, mainly as a decreasing content in albite and biotite by coincidental formation of secondary chlorites in the clay fraction. Further, we document the rapid evolution of microbial and plant munities along the chronosequence.
Compound-specific radiocarbon (14 C) analyses allow studying the fate of individual biomarkers in ecosystems. In lakes with small catchments, terrestrial biomarkers have the potential to be used for the dating of sediments that lack the traditionally targeted terrestrial macrofossils, if the specific organic compounds are deposited soon after production. On the other hand, if the biomarkers have been stored for a significant amount of time in the soils of the catchment before transported to the lake, their age can be used to reconstruct changes in average residence time of organic material on land through time. Here we present a study based on compound-specific 14 C analysis of the sedimentary record of Lake Soppensee, Switzerland, targeting long-chain n-alkanes of exclusive terrigenous origin, and comparing them with sediment ages obtained by high-resolution macrofossil dating. Additionally, we measured 14 C ages of bulk organic matter and carbonate samples to assess the hard water effect. Prior to 3100 cal BP n-alkanes had about the same age as the sediment or they were slightly older, indicating that the vast majority of the terrestrial organic carbon transported to the lake had a short residence time on land. In the samples younger than 3100 cal BP an increasing offset is observed, indicating liberation of old buried soil organic matter that must have accumulated over the previous millennia.
We performed a detailed study on the carbon build-up over the 140-year-long chronosequence of the Damma glacier forefield, Switzerland, to gain insights into the organic carbon dynamics during the initial stage of soil formation and ecosystem development. We determined soil carbon and nitrogen contents and their stable isotopic compositions, as well as molecular-level composition of the bulk soils, and recalcitrance parameters of carbon in different fractions. The chronosequence was divided into three age groups, separated by small end moraines that resulted from two glacier re-advances. The net ecosystem carbon balance (NECB) showed an exponential increase over the last decades, with mean annual values that range from 100 g C m À2 yr À1 in the youngest part to over 300 g C m À2 yr À1 in a 60-80 years old part. However, over the entire 140-year chronosequence, the NECB is only 20 g C m À2 yr À1 , similar to results of other glacier forefield studies. The difference between the short-and long-term NECB appears to be caused by reductions in ecosystem carbon (EC) accumulation during periods with a colder climate. We propose that two complementary mechanisms have been responsible: 1) Reductions in net primary productivity down to 50% below the long-term mean, which we estimated using reconstructed effective temperature sums. 2) Disturbance of sites near the terminus of the re-advanced glacier front. Stabilization of soil organic matter appeared to play only a minor role in the coarse-grained forefield. We conclude that the forefield ecosystem, especially primary productivity, reacts rapidly to climate changes. The EC gained at warm periods is easily lost again in a cooling climate. Our conclusions may also be valid for other high mountain ecosystems and possibly arctic ecosystems.
Fire-derived, pyrogenic carbon (PyC), sometimes called black carbon (BC), is the carbonaceous solid residue of biomass and fossil fuel combustion, such as char and soot. PyC is ubiquitous in the environment due to its long persistence, and its abundance might even increase with the projected increase in global wildfire activity and the continued burning of fossil fuel. PyC is also increasingly produced from the industrial pyrolysis of organic wastes, which yields charred soil amendments (biochar). Moreover, the emergence of nanotechnology may also result in the release of PyC-like compounds to the environment. It is thus a high priority to reliably detect, characterize and quantify these charred materials in order to investigate their environmental properties and to understand their role in the carbon cycle.Here, we present the benzene polycarboxylic acid (BPCA) method, which allows the simultaneous assessment of PyC's characteristics, quantity and isotopic composition ( 13 C and 14 C) on a molecular level. The method is applicable to a very wide range of environmental sample materials and detects PyC over a broad range of the combustion continuum, i.e., it is sensitive to slightly charred biomass as well as high temperature chars and soot. The BPCA protocol presented here is simple to employ, highly reproducible, as well as easily extendable and modifiable to specific requirements. It thus provides a versatile tool for the investigation of PyC in various disciplines, ranging from archeology and environmental forensics to biochar and carbon cycling research.
This work summarizes the methodical capabilities, improvements, and new developments in the radiocarbon laboratory of the accelerator mass spectrometry (AMS) facility at the University of Cologne, Germany, which was established in 2010. During the past years, the laboratory has specialized in the analysis of small and gaseous samples. We thus, recently installed a second ion source dedicated for radiocarbon (14C) analysis of CO2 samples at our 6 MV Tandetron AMS from High Voltage Engineering Europe B.V. that is coupled with the gas injection system from Ionplus and an EuroVector EA 3000 elemental analyzer. This work summarizes all pretreatment methods and analytical facilities established in our laboratory during the last years including 14C analysis of individual organic compounds and of CO2 trapped on molecular sieves. We also report different blank values including our long-term blank since 2011, which is for normal-sized, solid samples (650–1000 µg C) 0.0012 ± 0.0004 F14C (54,305 ± 2581 yr BP, n = 484). The precision obtained for modern samples measured as graphite is 0.5% and for gaseous samples injected with the GIS ≤2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.