The fuzzy set concept is often used in solution of problems in which the initial data is difficult or impossible to represent in the form of specific numbers or sets. Geo-information objects are distinguished by their uncertainty, their characteristics are often vague and have some error. Therefore, in the study of such objects is introduced the concept of "fuzziness" — fuzzy sets, fuzzy logic, linguistic variables, etc. The fuzzy set concept is given in the form of membership function. An ordinary set is a special case of a fuzzy one. If we consider a fuzzy object on the map, for example, a lake that changes its shape depending on the time of year, we can build up for it a characteristic function from two variables (the object’s points coordinates) and put a certain number in accordance with each point of the object. That is, we can describe a fuzzy set using its two-dimensional graphical image. Thus, we obtain an approximate view of a surface z = μ(x, y) in three-dimensional space. Let us now draw planes parallel to the plane. We’ll obtain intersections of our surface with these planes at 0 ≤ z ≤ 1. Let's call them as isolines. By projecting these isolines on the OXY plane, we’ll obtain an image of our fuzzy set with an indication of intermediate values μ(x, y) linked to the set’s points coordinates. So we’ll construct generalized Euler — Venn diagrams which are a generalization of well-known Euler — Venn diagrams for ordinary sets. Let's consider representations of operations on fuzzy sets A a n d B. Th e y u s u a l l y t a k e : μA B = min (μA,μB ), μA B = max (μA,μB ), μA = 1 − μA. Algebraic operations on fuzzy sets are defined as follows: μ A B x μ A x μ B x ( ) = ( ) + ( ) − −μ A (x)μ B (x), μ A B x μ A x μ B x ( ) = ( ) ( ), μ A (x) = 1 − μ A (x). Let's construct for a particular problem a generalized Euler — Venn diagram corresponding to it, and solve subtasks graphically, using operations on fuzzy sets, operations of intersection and integrating of the diagram’s bars.