The electrochemical (EC) resistive switching (RS) cross-point arrays, composed of nonvolatile RS (NV-RS) memories and volatile RS (V-RS) selectors, hold promise for high-density data storage, in-memory computing and neuromorphic computing. However, the conventional EC-RS devices based on metallic filaments suffer from the notorious current-volatility dilemma that the low and high current requirements for NV-RS memories and V-RS selectors, respectively, cannot be satisfied simultaneously, due to the dominant EC nature of the RS. In this work, we demonstrate electrochemically active, low thermal-conductivity and low melting-temperature semiconducting tellurium filament-based RS devices that solve this dilemma, enabling NV-RS memories to operate under lower currents than do V-RS selectors. This novel phenomenon arises as the consequence of the adversarial EC and Joule heating (JH) effects. The devices also show unusual stimulus frequency dependent long-term plasticity (LTP)-to-short-term plasticity (STP) transition. Devices with this property can be generically utilized as spatial-temporal filters in spiking neural networks (SNNs) for high-performance event-based visual recognition tasks, as illustrated in our noise filtering simulations. By regulating the EC-JH relationship using dielectric materials with decreasing thermal conductivities, full functional-range tunable Te filament-based devices, from always-NV RS, to NV-to-V transitionable RS, and to always-V RS, are also demonstrated. The tellurium filament-based RS devices are promising enablers for functional cross-point arrays.