Introduction:
Mikania micrantha has been used traditionally for wound dressings and promoted the healing of sores. This is due to the content of alkaloids and terpenoids/steroids compounds. Hyperglycemic is a good medium for bacterial growth and inhibits the wound healing process.
Purpose:
This study aimed to determine the wound healing of nanogels containing MMLE in hyperglycemic rats, as a model for diabetic wounds.
Methods:
Mikania micrantha leaves were extracted with the maceration method using ethanol 96% in 5 days. Carbopol 940 was used as the gelling agent. The parameters observed during the physical testing of nanogels were organoleptic, homogeneity, pH, and size of the particle. Antibacterial activity was tested on Staphylococcus aureus, Staphylococcus epidermis, Escherichia coli, and wound healing activity in hyperglycemic rats for 14 days observation. Diabetic wound healing was treated with 4 groups (P1, P2, K1, K2). Data were analyzed using SPSS.
Results:
Nanogel showed homogeneity, dark green color, transparency, pH 6.1± 0.1, and particle size range in 255-456 nm. Inhibition zone of antibacterial testing i.e. Staphylococcus aureus, Staphylococcus epidermis, and Escherichia coli was 10.57 ± 0.26 mm; 9.73 ± 0.21 mm; 8.4 ± 0.1 mm. The percentage of diabetic wound healing was in the range of 92.79±3.81% to 94.08 ± 2.33% for 14 days of observation.
Conclusion:
MMLE nanogels have the potential as a treatment for diabetic wound healing.