1998
DOI: 10.1002/mana.19981960102
|View full text |Cite
|
Sign up to set email alerts
|

Formules Locales de Type Martinelli – Bochner – Koppelman sur des Variétés CR

Abstract: We construct local formulas of Martinelli -Bochner -Koppelman type on qconcave generic C Rmanifolds. We apply these results to study the tangentiel Cauchy -Riemann equations and the Hartogs -Bochner phenomenon on such manifolds. 1991 Mathematics Subject Classificntion. 32A25, 32D5, 32F25, 32F40. Keyworrls and phmses. ReprCsentations intkgrales, Bquations de Cauchy -Riemann tangentielles, extensions de fonctions C Rq -convexit6qconcavith. ou les p v l 1 5 v 5 k, sont des fonctions a valeurs rCelles de classe C'… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0
3

Year Published

1998
1998
2006
2006

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 8 publications
0
2
0
3
Order By: Relevance
“…The local solvability of the ∂ b equation in q-concave CR manifolds goes back to Naruki [15], Henkin [9], Airapetjan-Henkin [1] and Nacinovich [14]. A homotopy formula for ∂ b for forms with compact support on q-concave manifolds was constructed earlier by Barkatou [3] and Barkatou-LaurentThiébaut [4]. A microlocal version of the local homotopy formula for ∂ b on qconcave manifolds was studied by Polyakov [16].…”
Section: Introductionmentioning
confidence: 99%
“…The local solvability of the ∂ b equation in q-concave CR manifolds goes back to Naruki [15], Henkin [9], Airapetjan-Henkin [1] and Nacinovich [14]. A homotopy formula for ∂ b for forms with compact support on q-concave manifolds was constructed earlier by Barkatou [3] and Barkatou-LaurentThiébaut [4]. A microlocal version of the local homotopy formula for ∂ b on qconcave manifolds was studied by Polyakov [16].…”
Section: Introductionmentioning
confidence: 99%
“…Corollaire 0.2. Soient M une sous-variété CR générique 1-concave, de classe C l+3 d'une variété analytique complexe et T une distribution d'ordre l sur M. Si ∂b T est une (0, 1)-forme de classe C l sur M alors T est en fait une fonction de classe C l+1/2 sur M. Le Corollaire 0.2 améliore un résultat de [3] (voir également [2, Thm. 1]) où l'auteur prouve un théorème de régularité hölderienne d'ordre 1 2 − ε si M est de classe C 3 et d'ordre 1/2 k − ε si M est de classe C 2 .…”
unclassified
“…Il est démontré par Fischer [9], lorsque M est une hypersurface. Nous ne répétons pas ici la démonstration, qui est identique à celle donnée dans [9] (voir aussi [3]).…”
unclassified
See 1 more Smart Citation
“…Motivated by the same problem, Laurent-Thiébaut and Leiterer proved in [9] some uniform estimates and in particular Hölder regularity for the ∂-equation on these domains. Other estimates can be found in [2].…”
mentioning
confidence: 99%