In this paper, we present the first fully-automated expected amortised cost analysis of self-adjusting data structures, that is, of randomised splay trees, randomised splay heaps and randomised meldable heaps, which so far have only (semi-)manually been analysed in the literature. Our analysis is stated as a type-and-effect system for a first-order functional programming language with support for sampling over discrete distributions, non-deterministic choice and a ticking operator. The latter allows for the specification of fine-grained cost models. We state two soundness theorems based on two different—but strongly related—typing rules of ticking, which account differently for the cost of non-terminating computations. Finally we provide a prototype implementation able to fully automatically analyse the aforementioned case studies."Image missing"