2018
DOI: 10.4171/135
|View full text |Cite
|
Sign up to set email alerts
|

Foundations of Rigid Geometry I

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
128
0
3

Year Published

2018
2018
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 63 publications
(132 citation statements)
references
References 47 publications
0
128
0
3
Order By: Relevance
“…By [FK,Corollary 3.7.13,p. 309], an adic affine formal scheme X ≃ Spf A is of finite ideal type if, and only if, A is an adic ring which has a finitely generated ideal of definition.…”
Section: Preliminariesmentioning
confidence: 91%
See 1 more Smart Citation
“…By [FK,Corollary 3.7.13,p. 309], an adic affine formal scheme X ≃ Spf A is of finite ideal type if, and only if, A is an adic ring which has a finitely generated ideal of definition.…”
Section: Preliminariesmentioning
confidence: 91%
“…We then say that X is an adic formal Sscheme or that X is adic over S. See [Ab,Definition 2.2.7,p. 128] (see also Remark 2.31(c)) and [FK,comment after Definition 1.3.1,p. 266].…”
Section: Preliminariesmentioning
confidence: 97%
“…Indeed, they follow from [7,Theorem 4.11] and the fact that an admissible formal model of a smooth projective curve is algebraizable (cf. [22,Proposition 10.3.2]). Proposition 2.9.…”
Section: 3mentioning
confidence: 99%
“…Cette classe d'anneaux, ainsi que d'autres, sont intensivementétudiées par Fujiwara et Kato dans [4]. Notre résultat principal concerne la platitude du produit tensoriel complété B ⊗ A C de deux A-algèbres topologiques préadiques B et C. En désignant par m un idéal de définition de B, par n un idéal de définition de C et par r l'idéal Im(m ⊗ A C) + Im(B ⊗ A n) de B ⊗ A C, nous montrons que, si m et n sont de type fini, A est un anneau absolument plat, C est un anneau cohérent et si n et r(B ⊗ A C) vérifient la propriété (APf ), alors B ⊗ A C est C-plat ; ce qui donne, en particulier, une réponseà la question posée dans [8] (cf.…”
Section: Introductionunclassified
“…Donc x ∈ Jx. L'autre inclusion est claire.La proposition suivante complète la proposition 7.4.16 de[4].…”
unclassified