The recent advances in DNA sequencing technology triggered next-generation sequencing (NGS) research in full scale. Big Data (BD) is becoming the main driver in analyzing these large-scale bioinformatic data. However, this complicated process has become the system bottleneck, requiring an amalgamation of scalable approaches to deliver the needed performance and hide the deployment complexity. Utilizing cutting-edge scientific workflows can robustly address these challenges. This paper presents a Spark-based alignment workflow called SparkFlow for massive NGS analysis over singularity containers. SparkFlow is highly scalable, reproducible, and capable of parallelizing computation by utilizing data-level parallelism and load balancing techniques in HPC and Cloud environments. The proposed workflow capitalizes on benchmarking two state-of-art NGS workflows, i.e., BaseRecalibrator and ApplyBQSR. SparkFlow realizes the ability to accelerate large-scale cancer genomic analysis by scaling vertically (HyperThreading) and horizontally (provisions ondemand). Our result demonstrates a trade-off inevitably between the targeted applications and processor architecture. SparkFlow achieves a decisive improvement in NGS computation performance, throughput, and scalability while maintaining deployment complexity. The paper's findings aim to pave the way for a wide range of revolutionary enhancements and future trends within the High-performance Data Analytics (HPDA) genome analysis realm.