Abstract: The proposed system facilitates uninterruptable charging of a photovoltaic (PV) fed plug-in electric vehicle (EV) battery charging system irrespective of solar irradiation conditions by integrating utility grid to the battery charging system. The system employs bidirectional cycloconverter (BDCC) in order to use utility grid as source or sink during different modes of operation which depends on the availability of solar power. During low irradiation condition, the utility grid acts as a backup source in order to facilitate uninterruptable charging of the EV battery. When surplus power is generated from the PV panel, it is fed to the utility grid, which acts as sink in this mode. For uninterruptable EV battery charging, the controller operates the switches and relays in the proposed system corresponding to solar irradiation level. The available literatures define complex control strategies which are solved in this proposed system by adopting a simple dynamic control algorithm. The simulation of the proposed system has been carried out using PSIM simulation software and experimental prototype has been designed, developed and tested for different modes of operations to validate the efficacy of the proposed system.