The IEEE 802.11p standard has been optimized for low-delay small-bandwidth wireless communications to provide vehicular safety services. However, IEEE 802.11p transceivers can considerably improve their robustness by incorporating MIMO transmission methods. Moreover, multiple antennas can also be used to increase the data transfer rate of IEEE 802.11p transceivers, a requirement necessary to implement, for instance, non-critical safety applications. In this article we describe the design and development of a multiple-antenna IEEE 802.11p performance evaluation system made of two IEEE 802.11p software-based transceivers and two different, flexible low-cost FPGA-based multi-antenna channel emulators. Our channel emulators are able to recreate seven vehicular communication environments including highways, urban canyons and suburban areas. Using our performance evaluation system, we obtained performance curves showing that IEEE 802.11p can dramatically improve its performance by using multiple transmit and receive antennas. In addition, our channel emulators accelerated the performance evaluation task between 6 and 209 times compared to that of conventional software-based simulation approaches.