Finite-dimensional attractors play an important role in finite-dimensional reduction of PDEs in mathematical modelization and numerical simulations. For non-autonomous random dynamical systems, Cui and Langa (J Differ Equ, 263:1225–1268, 2017) developed a random uniform attractor as a minimal compact random set which provides a certain description of the forward dynamics of the underlying system by forward attraction in probability. In this paper, we study the conditions that ensure a random uniform attractor to have finite fractal dimension. Two main criteria are given, one by a smoothing property and the other by a squeezing property of the system, and neither of the two implies the other. The upper bound of the fractal dimension consists of two parts: the fractal dimension of the symbol space plus a number arising from the smoothing/squeezing property. As an illustrative application, the random uniform attractor of a stochastic reaction–diffusion equation with scalar additive noise is studied, for which the finite-dimensionality in $$L^2$$
L
2
is established by the squeezing approach and that in $$H_0^1$$
H
0
1
by the smoothing framework. In addition, a random absorbing set that absorbs itself after a deterministic period of time is also constructed.