The influence of the fracture surface fractal dimension DF and the fractal dimension of grain microstructure DM on the strength of AISI 316L type austenitic stainless steel through the Hall-Petch relation has been studied. The change in complexity experimented by the net of grains, as measured by DM, is translated into the respective fracture surface irregularity through DF, in such a way that the higher the grain size (lower DM values) the lower the fracture surface roughness (lower values of DF) and the shallower the dimples on the fractured surfaces. The material was heat-treated at 904, 1010, 1095, and 1194°C, in order to develop equiaxed grain microstructures and then fractured by tension at room temperature. The fracture surfaces were analyzed with a scanning electron microscope, DF was determined using the slit-island method, and the values of DM were taken from the literature. The relation between grain size, DM, mechanical properties, and DF, developed for AISI 316L steel, could be generalized and therefore applied to most of the common micrograined metal alloys currently used in many key engineering areas.