2001 European Control Conference (ECC) 2001
DOI: 10.23919/ecc.2001.7076300
|View full text |Cite
|
Sign up to set email alerts
|

Fractional state variable filter for system identification by fractional model

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
39
0

Year Published

2009
2009
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 87 publications
(39 citation statements)
references
References 6 publications
0
39
0
Order By: Relevance
“…In our identification procedure, we take T = t i for t i ∈ [1. 8,8]. The obtained estimations and the associated relative estimation errors are shown in Figure 2 and Figure 3.…”
Section: Simulation Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…In our identification procedure, we take T = t i for t i ∈ [1. 8,8]. The obtained estimations and the associated relative estimation errors are shown in Figure 2 and Figure 3.…”
Section: Simulation Resultsmentioning
confidence: 99%
“…In [7], the use of methods based on fractional orthogonal bases has been introduced. Other techniques can be also found for example in [8], [9], [10] and the references therein.…”
Section: Introductionmentioning
confidence: 99%
“…Special care needs to be given to the estimation of the coefficients of the FDM to reduce the effect of perturbations and/or noise on the input and output data. An effective way to estimate the coefficients of a continuous-time (fractional order) model is through a SVF [40][41][42]. From a signal analysis point of view, the SVF consists of multiple band-pass filters used to obtain the behavior of differentiation at low frequencies, while reducing the effect of noise at high frequencies.…”
Section: Least Squares-based State-variable Filter Methodsmentioning
confidence: 99%
“…Only few papers deal with system identification using fractional statespace representation [6,10]. They are based on the minimization of an output error criterion by nonlinear programming techniques.…”
Section: Introductionmentioning
confidence: 99%
“…Then, they deduced the fractional model after estimating its rational approximation. Cois et al [6] proposed several extensions of equation error methods, such as the state variable filters and the instrumental variable (IV), to fractional system identification. Aoun et al [7] synthesized fractional orthogonal bases generalizing various bases (Laguerre, Kautz,...) to fractional differentiation orders for identification issues.…”
Section: Introductionmentioning
confidence: 99%