Recent advancements in social media have generated a myriad of unstructured geospatial data. Travel narratives are among the richest sources of such spatial clues. They are also a reflection of writers’ interaction with places. One of the prevalent ways to model this interaction is a points of interest (POIs) graph depicting popular POIs and routes. A relevant notion is that frequent pairwise occurrences of POIs indicate their geographic proximity. This work presents an empirical interpretation of this theory and constructs spatially enriched POI graphs, a clear augmentation to popularity-based POI graphs. A triplet pattern, rule-based spatial relation extraction technique SpatRE is proposed and compared with standard relation extraction systems Ollie and Stanford OpenIE. A travel blogs data set is also contributed containing labelled spatial relations. The performance is further evaluated on SemEval 2013 benchmark data sets. Finally, spatially enriched POI graphs are qualitatively compared with TripAdvisor and Google Maps to visualise information accuracy.